If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-24X+144=4
We move all terms to the left:
X^2-24X+144-(4)=0
We add all the numbers together, and all the variables
X^2-24X+140=0
a = 1; b = -24; c = +140;
Δ = b2-4ac
Δ = -242-4·1·140
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4}{2*1}=\frac{20}{2} =10 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4}{2*1}=\frac{28}{2} =14 $
| -8x-34+-4+30=180 | | 8=10-2w | | 6 = p−459 | | x+99999999=x | | (3x+5=10) | | q/5-3=2 | | 4z−3=21 | | `-1=x | | `-1=i | | x-3x+9=10 | | 4x-3+18x-15=180 | | 8x-11+3x-1=9 | | 9+3t=18 | | -9a2-5a-4=0 | | b=1/0 | | 7b-86=2b+19 | | 4×n-2=10×2 | | 1/2(6x-9)=3x+6 | | b=0/0 | | 3(2x-7)-3=2(4x-5) | | 19=2-x-x-x-x-x-x-x | | q5− 3= 2 | | -3x-15+5x+57=180 | | 40x159=x | | 10m-5=15+6m | | 5n2-n+4=-3 | | x+3412x=1x | | -4x+2+6x=22 | | -3x-15+5x+57=18 | | 19v+59=18v+64 | | 2a+7=2 | | 32+2v=62 |